Kimura 3-parameter model with root distribution $\pi = \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right)$.
The transition matrix associated with edge $i$ is of the form
$$M_j = \begin{pmatrix}
a_i & b_i & c_i & d_i\\
b_i & a_i & d_i & c_i\\
c_i & d_i & a_i & b_i\\
d_i & c_i & b_i & a_i
\end{pmatrix}$$ and the Fourier parameters are $\left(x^{(i)}_1, x^{(i)}_2, x^{(i)}_i, x^{(i)}_4\right)$ for all edges $i$.
Phylogenetic tree 3-0-0
Evolutionary model
Copied to clipboard!
Summary
Dimension: 10
Degree: 96
Probability coordinates: 16
Fourier coordinates: 16
dim of Singular locus: -
deg of Singular locus: -
MLdeg: -
EDdeg: 12673
Degree: 96
Probability coordinates: 16
Fourier coordinates: 16
dim of Singular locus: -
deg of Singular locus: -
MLdeg: -
EDdeg: 12673
Probability parametrization
$\begin{align}
p_{\texttt{ACA}} &= \frac{1}{2}(a_1a_3b_2 + a_2b_1b_3 + c_1c_3d_2 + c_2d_1d_3) \\[0.5em]
p_{\texttt{AGT}} &= \frac{1}{2}(a_1c_2d_3 + a_2b_3c_1 + a_3b_2d_1 + b_1c_3d_2) \\[0.5em]
p_{\texttt{ATT}} &= \frac{1}{2}(a_1d_2d_3 + a_2a_3d_1 + b_1c_2c_3 + b_2b_3c_1) \\[0.5em]
p_{\texttt{AGA}} &= \frac{1}{2}(a_1a_3c_2 + a_2c_1c_3 + b_1b_3d_2 + b_2d_1d_3) \\[0.5em]
p_{\texttt{ACG}} &= \frac{1}{2}(a_1b_2c_3 + a_2b_1d_3 + a_3c_1d_2 + b_3c_2d_1) \\[0.5em]
p_{\texttt{AAC}} &= \frac{1}{2}(a_1a_2b_3 + a_3b_1b_2 + c_1c_2d_3 + c_3d_1d_2) \\[0.5em]
p_{\texttt{ATA}} &= \frac{1}{2}(a_1a_3d_2 + a_2d_1d_3 + b_1b_3c_2 + b_2c_1c_3) \\[0.5em]
p_{\texttt{AGG}} &= \frac{1}{2}(a_1c_2c_3 + a_2a_3c_1 + b_1d_2d_3 + b_2b_3d_1) \\[0.5em]
p_{\texttt{AAT}} &= \frac{1}{2}(a_1a_2d_3 + a_3d_1d_2 + b_1b_2c_3 + b_3c_1c_2) \\[0.5em]
p_{\texttt{ATG}} &= \frac{1}{2}(a_1c_3d_2 + a_2b_3d_1 + a_3b_2c_1 + b_1c_2d_3) \\[0.5em]
p_{\texttt{AAA}} &= \frac{1}{2}(a_1a_2a_3 + b_1b_2b_3 + c_1c_2c_3 + d_1d_2d_3) \\[0.5em]
p_{\texttt{ACC}} &= \frac{1}{2}(a_1b_2b_3 + a_2a_3b_1 + c_1d_2d_3 + c_2c_3d_1) \\[0.5em]
p_{\texttt{AAG}} &= \frac{1}{2}(a_1a_2c_3 + a_3c_1c_2 + b_1b_2d_3 + b_3d_1d_2) \\[0.5em]
p_{\texttt{AGC}} &= \frac{1}{2}(a_1b_3c_2 + a_2c_1d_3 + a_3b_1d_2 + b_2c_3d_1) \\[0.5em]
p_{\texttt{ACT}} &= \frac{1}{2}(a_1b_2d_3 + a_2b_1c_3 + a_3c_2d_1 + b_3c_1d_2) \\[0.5em]
p_{\texttt{ATC}} &= \frac{1}{2}(a_1b_3d_2 + a_2c_3d_1 + a_3b_1c_2 + b_2c_1d_3)
\end{align}$
Fourier parametrization
$\begin{align}
q_{\texttt{ATT}} &= x^{(1)}_{1}x^{(2)}_{4}x^{(3)}_{4} \\[0.5em]
q_{\texttt{CCA}} &= x^{(1)}_{2}x^{(2)}_{2}x^{(3)}_{1} \\[0.5em]
q_{\texttt{CGT}} &= x^{(1)}_{2}x^{(2)}_{3}x^{(3)}_{4} \\[0.5em]
q_{\texttt{GAG}} &= x^{(1)}_{3}x^{(2)}_{1}x^{(3)}_{3} \\[0.5em]
q_{\texttt{GCT}} &= x^{(1)}_{3}x^{(2)}_{2}x^{(3)}_{4} \\[0.5em]
q_{\texttt{TCG}} &= x^{(1)}_{4}x^{(2)}_{2}x^{(3)}_{3} \\[0.5em]
q_{\texttt{TTA}} &= x^{(1)}_{4}x^{(2)}_{4}x^{(3)}_{1} \\[0.5em]
q_{\texttt{AGG}} &= x^{(1)}_{1}x^{(2)}_{3}x^{(3)}_{3} \\[0.5em]
q_{\texttt{GTC}} &= x^{(1)}_{3}x^{(2)}_{4}x^{(3)}_{2} \\[0.5em]
q_{\texttt{CAC}} &= x^{(1)}_{2}x^{(2)}_{1}x^{(3)}_{2} \\[0.5em]
q_{\texttt{TAT}} &= x^{(1)}_{4}x^{(2)}_{1}x^{(3)}_{4} \\[0.5em]
q_{\texttt{AAA}} &= x^{(1)}_{1}x^{(2)}_{1}x^{(3)}_{1} \\[0.5em]
q_{\texttt{GGA}} &= x^{(1)}_{3}x^{(2)}_{3}x^{(3)}_{1} \\[0.5em]
q_{\texttt{ACC}} &= x^{(1)}_{1}x^{(2)}_{2}x^{(3)}_{2} \\[0.5em]
q_{\texttt{CTG}} &= x^{(1)}_{2}x^{(2)}_{4}x^{(3)}_{3} \\[0.5em]
q_{\texttt{TGC}} &= x^{(1)}_{4}x^{(2)}_{3}x^{(3)}_{2}
\end{align}$
Equivalent classes of probability parametrization
$\begin{align}
\text{Class } &p_{\texttt{AAA}}:\ p_{\texttt{AAA}},\ p_{\texttt{CCC}},\ p_{\texttt{GGG}},\ p_{\texttt{TTT}} \\[0.5em]
\text{Class } &p_{\texttt{AAC}}:\ p_{\texttt{AAC}},\ p_{\texttt{CCA}},\ p_{\texttt{GGT}},\ p_{\texttt{TTG}} \\[0.5em]
\text{Class } &p_{\texttt{AAG}}:\ p_{\texttt{AAG}},\ p_{\texttt{CCT}},\ p_{\texttt{GGA}},\ p_{\texttt{TTC}} \\[0.5em]
\text{Class } &p_{\texttt{AAT}}:\ p_{\texttt{AAT}},\ p_{\texttt{CCG}},\ p_{\texttt{GGC}},\ p_{\texttt{TTA}} \\[0.5em]
\text{Class } &p_{\texttt{ACA}}:\ p_{\texttt{ACA}},\ p_{\texttt{CAC}},\ p_{\texttt{GTG}},\ p_{\texttt{TGT}} \\[0.5em]
\text{Class } &p_{\texttt{ACC}}:\ p_{\texttt{ACC}},\ p_{\texttt{CAA}},\ p_{\texttt{GTT}},\ p_{\texttt{TGG}} \\[0.5em]
\text{Class } &p_{\texttt{ACG}}:\ p_{\texttt{ACG}},\ p_{\texttt{CAT}},\ p_{\texttt{GTA}},\ p_{\texttt{TGC}} \\[0.5em]
\text{Class } &p_{\texttt{ACT}}:\ p_{\texttt{ACT}},\ p_{\texttt{CAG}},\ p_{\texttt{GTC}},\ p_{\texttt{TGA}} \\[0.5em]
\text{Class } &p_{\texttt{AGA}}:\ p_{\texttt{AGA}},\ p_{\texttt{CTC}},\ p_{\texttt{GAG}},\ p_{\texttt{TCT}} \\[0.5em]
\text{Class } &p_{\texttt{AGC}}:\ p_{\texttt{AGC}},\ p_{\texttt{CTA}},\ p_{\texttt{GAT}},\ p_{\texttt{TCG}} \\[0.5em]
\text{Class } &p_{\texttt{AGG}}:\ p_{\texttt{AGG}},\ p_{\texttt{CTT}},\ p_{\texttt{GAA}},\ p_{\texttt{TCC}} \\[0.5em]
\text{Class } &p_{\texttt{AGT}}:\ p_{\texttt{AGT}},\ p_{\texttt{CTG}},\ p_{\texttt{GAC}},\ p_{\texttt{TCA}} \\[0.5em]
\text{Class } &p_{\texttt{ATA}}:\ p_{\texttt{ATA}},\ p_{\texttt{CGC}},\ p_{\texttt{GCG}},\ p_{\texttt{TAT}} \\[0.5em]
\text{Class } &p_{\texttt{ATC}}:\ p_{\texttt{ATC}},\ p_{\texttt{CGA}},\ p_{\texttt{GCT}},\ p_{\texttt{TAG}} \\[0.5em]
\text{Class } &p_{\texttt{ATG}}:\ p_{\texttt{ATG}},\ p_{\texttt{CGT}},\ p_{\texttt{GCA}},\ p_{\texttt{TAC}} \\[0.5em]
\text{Class } &p_{\texttt{ATT}}:\ p_{\texttt{ATT}},\ p_{\texttt{CGG}},\ p_{\texttt{GCC}},\ p_{\texttt{TAA}}
\end{align}$
Equivalent classes of Fourier parametrization
$\begin{align}
\text{Class } &0:\ q_{\texttt{CAA}}, q_{\texttt{GAA}}, q_{\texttt{TAA}}, q_{\texttt{ACA}}, q_{\texttt{GCA}}, q_{\texttt{TCA}}, q_{\texttt{AGA}}, q_{\texttt{CGA}}, q_{\texttt{TGA}}, q_{\texttt{ATA}}, q_{\texttt{CTA}}, q_{\texttt{GTA}}, q_{\texttt{AAC}}, q_{\texttt{GAC}}, q_{\texttt{TAC}}, q_{\texttt{CCC}}, q_{\texttt{GCC}}, q_{\texttt{TCC}}, q_{\texttt{AGC}}, q_{\texttt{CGC}}, q_{\texttt{GGC}}, q_{\texttt{ATC}}, q_{\texttt{CTC}}, q_{\texttt{TTC}}, q_{\texttt{AAG}}, q_{\texttt{CAG}}, q_{\texttt{TAG}}, q_{\texttt{ACG}}, q_{\texttt{CCG}}, q_{\texttt{GCG}}, q_{\texttt{CGG}}, q_{\texttt{GGG}}, q_{\texttt{TGG}}, q_{\texttt{ATG}}, q_{\texttt{GTG}}, q_{\texttt{TTG}}, q_{\texttt{AAT}}, q_{\texttt{CAT}}, q_{\texttt{GAT}}, q_{\texttt{ACT}}, q_{\texttt{CCT}}, q_{\texttt{TCT}}, q_{\texttt{AGT}}, q_{\texttt{GGT}}, q_{\texttt{TGT}}, q_{\texttt{CTT}}, q_{\texttt{GTT}}, q_{\texttt{TTT}} \\[0.5em]
\text{Class } &q_{\texttt{AAA}}:\ q_{\texttt{AAA}} \\[0.5em]
\text{Class } &q_{\texttt{ACC}}:\ q_{\texttt{ACC}} \\[0.5em]
\text{Class } &q_{\texttt{AGG}}:\ q_{\texttt{AGG}} \\[0.5em]
\text{Class } &q_{\texttt{ATT}}:\ q_{\texttt{ATT}} \\[0.5em]
\text{Class } &q_{\texttt{CAC}}:\ q_{\texttt{CAC}} \\[0.5em]
\text{Class } &q_{\texttt{CCA}}:\ q_{\texttt{CCA}} \\[0.5em]
\text{Class } &q_{\texttt{CGT}}:\ q_{\texttt{CGT}} \\[0.5em]
\text{Class } &q_{\texttt{CTG}}:\ q_{\texttt{CTG}} \\[0.5em]
\text{Class } &q_{\texttt{GAG}}:\ q_{\texttt{GAG}} \\[0.5em]
\text{Class } &q_{\texttt{GCT}}:\ q_{\texttt{GCT}} \\[0.5em]
\text{Class } &q_{\texttt{GGA}}:\ q_{\texttt{GGA}} \\[0.5em]
\text{Class } &q_{\texttt{GTC}}:\ q_{\texttt{GTC}} \\[0.5em]
\text{Class } &q_{\texttt{TAT}}:\ q_{\texttt{TAT}} \\[0.5em]
\text{Class } &q_{\texttt{TCG}}:\ q_{\texttt{TCG}} \\[0.5em]
\text{Class } &q_{\texttt{TGC}}:\ q_{\texttt{TGC}} \\[0.5em]
\text{Class } &q_{\texttt{TTA}}:\ q_{\texttt{TTA}}
\end{align}$
Invariants in Fourier coordinates
Ideal generated by $$-$$
Gröbner basis of ideal of invariants
Gröbner basis with $0$ elements
Additional information
The cardinality of the smallest set of generators that define the ideal of phylogenetic invariants: 34
The largest degree of a generator in the degree reverse lexicographic reduced Gröbner basis: 4
The largest degree of an element in a minimal generating set for the ideal of phylogenetic invariants: 4
The cardinality of the degree reverse lexicographic reduced Gröbner basis of the ideal of phylogenetic invariants: 34
The largest degree of a generator in the degree reverse lexicographic reduced Gröbner basis: 4
The largest degree of an element in a minimal generating set for the ideal of phylogenetic invariants: 4
The cardinality of the degree reverse lexicographic reduced Gröbner basis of the ideal of phylogenetic invariants: 34
Specialized Fourier transform
$\frac{1}{1} \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1\\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1\\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1\\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1\\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1\\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1\\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1\\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1\\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1\\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1\\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1\\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1\\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1\\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1\\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1
\end{pmatrix} ] $
Inverse specialized Fourier transform
$\frac{1}{16} \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1\\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1\\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1\\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1\\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1\\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1\\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1\\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1\\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1\\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1\\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1\\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1\\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1\\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1\\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1
\end{pmatrix} $