Cavender Felsenstein Neyman model with root distribution $\pi = \left(\frac{1}{2}, \frac{1}{2} \right)$.
The transition matrix associated with edge $i$ is of the form
$$M_j = \begin{pmatrix}
a_i & b_i\\
b_i & a_i
\end{pmatrix}$$ and the Fourier parameters are $\left(x^{(i)}_1, x^{(i)}_2\right)$ for all edges $i$.
Phylogenetic tree 3-0-0
Evolutionary model
Copied to clipboard!
Summary
Dimension: 4
Degree: 1
Probability coordinates: 4
Fourier coordinates: 4
dim of Singular locus: -
deg of Singular locus: -
MLdeg: 1
EDdeg: 1
Degree: 1
Probability coordinates: 4
Fourier coordinates: 4
dim of Singular locus: -
deg of Singular locus: -
MLdeg: 1
EDdeg: 1
Probability parametrization
$\begin{align}
p_{\texttt{010}} &= \frac{1}{2}(a_1a_3b_2 + a_2b_1b_3) \\[0.5em]
p_{\texttt{000}} &= \frac{1}{2}(a_1a_2a_3 + b_1b_2b_3) \\[0.5em]
p_{\texttt{011}} &= \frac{1}{2}(a_1b_2b_3 + a_2a_3b_1) \\[0.5em]
p_{\texttt{001}} &= \frac{1}{2}(a_1a_2b_3 + a_3b_1b_2)
\end{align}$
Fourier parametrization
$\begin{align}
q_{\texttt{000}} &= x^{(1)}_{1}x^{(2)}_{1}x^{(3)}_{1} \\[0.5em]
q_{\texttt{110}} &= x^{(1)}_{2}x^{(2)}_{2}x^{(3)}_{1} \\[0.5em]
q_{\texttt{011}} &= x^{(1)}_{1}x^{(2)}_{2}x^{(3)}_{2} \\[0.5em]
q_{\texttt{101}} &= x^{(1)}_{2}x^{(2)}_{1}x^{(3)}_{2}
\end{align}$
Equivalent classes of probability parametrization
$\begin{align}
\text{Class } &p_{\texttt{000}}:\ p_{\texttt{000}},\ p_{\texttt{111}} \\[0.5em]
\text{Class } &p_{\texttt{001}}:\ p_{\texttt{001}},\ p_{\texttt{110}} \\[0.5em]
\text{Class } &p_{\texttt{010}}:\ p_{\texttt{010}},\ p_{\texttt{101}} \\[0.5em]
\text{Class } &p_{\texttt{011}}:\ p_{\texttt{011}},\ p_{\texttt{100}}
\end{align}$
Equivalent classes of Fourier parametrization
$\begin{align}
\text{Class } &0:\ q_{\texttt{100}}, q_{\texttt{010}}, q_{\texttt{001}}, q_{\texttt{111}} \\[0.5em]
\text{Class } &q_{\texttt{000}}:\ q_{\texttt{000}} \\[0.5em]
\text{Class } &q_{\texttt{011}}:\ q_{\texttt{011}} \\[0.5em]
\text{Class } &q_{\texttt{101}}:\ q_{\texttt{101}} \\[0.5em]
\text{Class } &q_{\texttt{110}}:\ q_{\texttt{110}}
\end{align}$
Invariants in Fourier coordinates
Ideal generated by $\langle 0 \rangle$
Gröbner basis of ideal of invariants
Gröbner basis with $0$ elements
Additional information
The cardinality of the smallest set of generators that define the ideal of phylogenetic invariants: 0
The largest degree of a generator in the degree reverse lexicographic reduced Gröbner basis: 0
The largest degree of an element in a minimal generating set for the ideal of phylogenetic invariants: 0
The cardinality of the degree reverse lexicographic reduced Gröbner basis of the ideal of phylogenetic invariants: 0
The largest degree of a generator in the degree reverse lexicographic reduced Gröbner basis: 0
The largest degree of an element in a minimal generating set for the ideal of phylogenetic invariants: 0
The cardinality of the degree reverse lexicographic reduced Gröbner basis of the ideal of phylogenetic invariants: 0
Specialized Fourier transform
$\frac{1}{1} \begin{pmatrix}
1 & 1 & 1 & 1\\
1 & -1 & -1 & 1\\
1 & -1 & 1 & -1\\
1 & 1 & -1 & -1
\end{pmatrix} ] $
Inverse specialized Fourier transform
$\frac{1}{4} \begin{pmatrix}
1 & 1 & 1 & 1\\
1 & -1 & -1 & 1\\
1 & -1 & 1 & -1\\
1 & 1 & -1 & -1
\end{pmatrix} $